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AIIstrac:t-We study the postbuckling of an elastic rectangular plate with a large aspect ratio.
Using the multiple scale expansion method, we establish that, for each posteriticalload, the wave
length of buckling patterns is restricted to some band. The results are compared with experiments
and with those given by the classical postbuckling theory.

I. INTRODUcnON

We study the buckling of an elastic rectangular plate with a large aspect ratio subjected to
uniaxial compression. The long sides, parallel to the Ox-axis, are simply supported. Various
boundary conditions are considered along the short sides. In classical linear theory[l, 2],
the latter boundary conditions are not taken into account and the assumed mode is
periodic with respect to x. For a given wavenumber q, the plane state is unstable when the
load Aexceeds a critical value A(q). The classical postbuckJing theory[3, 4] can be applied if
the aspect ratio is finite, or if one, a priori, seeks periodic postbuckling solutions with a
prescribed wavenumber. In the case of a single buckling mode, this nonlinear theory
provides a solution whose shape is roughly constant and whose amplitude grows as £1/2, t

being the difference between the load and its critical value. Similar methods have been
applied for aspect ratios close to 21/ 2, 61/ 2, ••• , in which cases two modes with two different
wavelengths are competing[5-lO]. According to the boundary conditions, the stable
solutions correspond either to any of the wavelengths or to both. The coexistence of
different types of solutions has been also established away from the first bifurcation point
by numerical computations[8, 11, 12].

In the present case of a large aspect ratio, many buckling modes are competing, and
those methods do not work. The multiple scale expansion method will permit us to take
this mode packet into account and to select a band of admissible wavelengths.

Experiments have been performed with clamped short sides by Clement et a/.[13] and
with simply supported short sides by Boucif et al.[14]. The observed values of (A, q) are
not in the whole region above the neutral stability curve A(q). With clamped short sides,
the selected wavenumbers seem to be inside a cone that is pictured in Fig. 1. Furthermore,
the postbuckling deflection is not exactly periodic, but its amplitude is modulated close to
the short sides. In the simply supported case, this deflection is periodic, and the observed
values of ()., q) are in the region above a parabolic-looking curve, which is narrower than
the neutral stability curve (Fig. 1).

The amplitude modulation is now well understood and can be elucidated by solving
an amplitude equation that has been established by Segel[15], Newell and Whitehead[l6]
for Rayleigh-Benard's convection and by Lange and Newell[17] for a beam buckling
problem. This amplitude equation method has been recently extended by Cross et a/.[18]
and by Pomeau and Zaleski[19]. In this way, they have .explained the existence of a large
number of solutions beyond the instability threshold, the selected values of (A, q) lying in
a cone as pictured in Fig. 1. The limits of this cone are very sensitive to the boundary
conditions on the long sides, as also on the short sides, which seems more surprising. This
analysis has been applied to the convection[18] and to various buckling problems of a beam
on a foundation[19-22].

The wavelength selection problem in the buckling of a long rectangular plate has
been previously considered by Pomeau[23] with clamped short sides and with in-plane
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Fig. 1. Stability boundaries in the wavenumber-load plane. The continuous line is the classical
neutral stability curve. The two others are lower limits with clamped (dashes, reference [l3D and

simply supported (dots, reference [I4D short sides.

boundary conditions different from those of the experiments. In the present paper, we
solve this wavelength selection with more realistic boundary conditions. Furthermore, we
discuss the influence ofthe short side boundary conditions. We use a double scale expansion
method, as introduced by Cross et aJ.[18] and as modified in [22].

2. THE PHYSICAL PROBLEM AND UNBAR STABILITY

We consider a thin elastic rectangular plate of length L and of width n, in
nondimensional terms. The length L is assumed to be large. A uniform compressive load
is applied on the short sides so that the prebuckling stress is uniaxial and uniform (Fig. 2).
Within the framework of Von Karman plate theory, the transverse displacement wand
the additional stress function/are solutions of

A21= -[w, w]/2,

where [,] is the usual bracket operator,

•r/2 1;.- ---,

~ 0-------------------------L x

-r/21-----------------'
I
I

--~-y
Fig. 2. Plate geometry and long sides boundary conditions.

(1)

(2)

(3)
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A == 12Nla2(1-v'r)/Eh 3x 2 is the load parameter,
N is the applied compressive force per unit length,
la, h are the width and thickness of the plate,
E, v are Young's modulus and Poisson's ratio of the plate material.
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In the experiments reported in [13] and [14], the transverse displacement along the
long sides is restrained by rigid vertical blades (Fig. 2). This implies that this part of the
boundary is simply supported

w(x, ±x/2) == o;w(x, ±x/2) == 0,

and that no in-plane stress is applied there

f(x, ± x/2) == oyf(x, ± x/2) == O.

(4)

(5)

Boundary conditions similar to (5) must be satisfied along the short sides, but they are not
needed in our calculations. Pomeau[23] postulated that there is no in-plane shear stress
and that the normal displacement is uniform on each side, which leads to the alternative
boundary conditions[IO]

oyf(x, ±x/2) == oif(x, ±x/2) == o.

The short sides are assumed to be perfectly or imperfectly clamped

(6)

w(O,y) == w(L,y) == 0,

(oxw-ko;wHO,y) == 0, (oxw+ko;wHL,y) == O.

(7)

(8)

The nonnegative coefficient k measures the flexural compliance of the support. The simply
supported case k == 00 will be studied in Section S.

Within the standard linear theory[l, 2], the critical value of the load Ais characterized
by the existence of a buckling mode W (x, y), which is a solution of the linearized equation

(9)

and, in theory, of boundary conditions (4), (7) and (8). Because the aspect ratio is large,
the conditions on the short sides act as perturbations and therefore can be neglected in a
first-order analysis. Conditions (7) and (8) are replaced by the requirement of a harmonic
behaviour in the x-direction. With this method, the first packet of buckling modes can be
expressed as

W(x,y) == eiqx cos y+c.c.,

A(q) == (q+ l/q)2,

(19)

(II)

where c.c. denotes the complex conjugate. One finds other packets by replacing cos y by
sin (2y), cos (3y), ... , but the corresponding values of A(q) are much greater than the one
given by (10), (11). The neutral stability curve has the same shape as in Fig. 1. The critical
load and the critical wavenumber correspond to the minimum of this curve

The validity of this first-order analysis arises from the large aspect ratio and from the
uniformity of the prebuckling state. Indeed, the latter property allows a Fourier splitting
that justifies the requirement of the harmonic mode. It is a straightforward matter that,
when the load is greater than )'e, an initial displacement in the form (11) is dynamically
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amplified for a band of wavenumbers close to qc. Then we have to solve a bifurcation
problem with a continuous spectrum.

3. TWO AMPLITUDE EQUATIONS

In this section we perform an asymptotic analysis, the main small parameter being
the load increment

e = A.-A.c = A.-4. (12)

When e is positive, there is a large number of instability modes. The bandwidth of the
corresponding wavenumbers is 0(e 1

/
2
), as indicated by Fig. l. A linear combination of

these modes leads to a slowly modulated spatial oscillation. That is why one usually seeks
solutions which depend on x, y and, furthermore, on X defined by[16, 17,24]

(13)

This slow variable will permit us to take into account the boundary conditions on the
short sides that had been neglected in the first-order analysis.

Unfortunately, Cross et a/.[18] established that such an asymptotic expansion does
not converge for large X. In this region of a large X, they first used an alternative double
scale expansion, and next they matched the two types of solutions. A more general method
would be to introduce a larger number ,of scales x, el / 2x, ex, ... , but the computations
would become more intricate than those in [18].

In view of experimental results[13] and previous computations[18, 20], we expect that
the deflection goes to a periodic shape in the centre of the plate. The corresponding
wavenumber must not be a priori prescribed since the problem is nonlinear. Hence, as in
[22], we introduce a new variable ethat is able to account exactly for a periodic behaviour
in the centre

e=q(e)x, (14)

The real numbers QI, Q2"" are to be specified later on. We seek the deflection w and the
stress functionfas depending on X, e, y, and we shall require 2n-periodicity with respect
to e. This choice wiIl provide uniformly valid solutions in the semi-infinite strip, with only
two scales in the x-direction.

According to the classical rule within the double scale expansion method, the following
identities hold

Ox = q(e)oc+e1/2ox = 0c+el/2ox+eQloC+e3l2Q2oC+0(e2),

0-: = ol+2£1/2olx+e(o}+2Qlol)+2£3/2(QIO}~+Q2ol)+0(e2),

L\;y = L\ly+4e1/2olxL\cy+2£{(o}+2QloDL\cx+2olo}}

+4e3/2{(QIO}~ +Q20l) L\~x+olo~+2Q ,olox} +0(e2),

[G,Hl~y = [G,H](y+2£I12([oxG,H]+[oxH,G])+O(e),

where we have used the notations

(15)

and where {,lx., is the bilinear differential operator defined in (3). In what follows, we
always consider the differential operators [, land L\ with respect to the rapid variables e,
y, and therefore we omit the indices.
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The deflection wand the stress function/are expanded into powers of &1/2

SIS

(16)

(17)

For finite aspect ratio problems[4], wand 1 have similar expansions, but the term &W2
vanishes because of symmetry. We shall show that it is necessary to account for spatial
interactions. Inserting (16), (17) and the previous operational rules into the field equation
(1), we find at the four first orders (with the notation 0 = 4 2+401)

OWl = 0, (18)

OW3 = -4olx(4+2)W2 -2(oi+2Q,c31)(4+2)w, -ol(40i+ I)w, +[/2' WI], (20)

OW4 = -40lx(4+2)W3-2(oi+2Q,ol)(4+2)w2-4(Q,oi~+Q20l)(4+2)wI

-ol(40i+ l)w2-4o}o~w,-8Qloioxwl-20lxWI

+[/3, wd+[f2' w2]+2[oxI2' wI]+2[oxW,J2]. (21)

In the like manner, from eqn (2) we obtain

(22)

(23)

The first-order equation (18) is to be solved with the boundary condition (4) and with
the assumption of 2x-periodicity with respect to e. As in Section 2, the solutions are in the
form

W,(X, e,y) = yA I (X) el~ cos y+c.c., (24)

where the complex amplitude A ,(X) is an arbitrary function of the slow variable because
only the rapid variables eand y appear in the differential operator O. The real number y
has been introduced for the sake of normalization. With this WI> eqn (19) is identical to
(18), and its solution involves a second order slowly varying amplitude A 2(X)

(25)

The stress functions/2 and/3 are uniquely defined by eqns (22) and (23),'the boundary
conditions (5) and the requirement of 2x-periodicity. They can be explicitly expressed as
functions of the unknown amplitudes A I(X), A 2(X). This computation is performed in
Appendix A. For instance, the first term 12 is given by

12(X, e,y) = _y21A .1 2 cos2yf8+y2At e2~g{y)fI6+c.c.,

g(y) = -I +a cosh (2y)+by sinh (2y), (26)

sinh x+x cosh x
a= ,

x +sinh x cosh x
b=- 2 sinh x .

x+sinh x cosh x

On account of (24)-(26), eqn (20) has the form

(27)
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The square operator 0, associated with (4) and with the periodicity condition, is selfadjoint,
and its kernel is given by (10). Hence, the nonhomogeneous equation (27) has a solution if
and only if the right-hand side of (27) satisfies the solvability condition

f+"/2

F1(y) cos y dy == O.
-,,/2

(28)

As shown in Appendix B, this solvability condition provides a differential equation for the
first amplitude A 1

(29)

where the nonlinear term has been simplified by choosing the number y in such a way that

2 == 2n(n+sinh n cosh n) ,.., 897929
y n2 +n sinh n cosh n-sinh2 n ,.., 2. . (30)

The fundamental equation (29) first appeared in papers by Newell and Whitehead[16] and
Segel(lS] and has been found in a number of stability problems[17, 23].

In the same way, there is a solvability condition for the existence of W4' This leads to
a differential equation for A 2(X) (Appendix B)

4Ai +A 2 -2IAd 2A 2 -Ai12 == 4iA')' -8iQ IA'1 +2iA'1 -iy2oIAd 2A'.. 0 ~ 1.132523.
(31)

This second amplitudeequation has been recently established for problems ofconvection[18]
and beam buckling[20, 22].

Similar computations are performed with the less realistic boundary conditions (6) in
Appendix C. The results do not corroborate exactly those of Pomeau[23].

4. CLAMPED SHORT SIDES

In this section we consider short sides that are perfectly or imperfectly clamped. The
deflection satisfies (7) and (8) with a nonnegative coefficient k. The plate is clamped in the
usual sense if k is zero. In the general case, the supports of the short sides have an elastic
behaviour with respect to the plate rotation, and k is the compliance.

We assume that the expansions (13), (14), (16), (24) and (25) hold up to the boundary
x == O. Close to this boundary, which means in the region x == 0(1) or X == 0(eI/ 2), these
expansions can be written in the form

At the first order the deftection is harmonic. Because wand a"w-a;wk are not in phase,
both conditions (7) and (8) cannot be satisfied except if the amplitude A 1(0) is zero. The
same holds at the other short sides

(33)

An alternative type of solution (referred to as a type II solution) has been studied by
Kramer and Hohenberg[21], who assumed that the expansions no longer hold for small
X's. This has been performed for a one-dimensional model with a negative compliance. If
k is negative, it seems that local buckling appears at a load much smaller than Ae• Hence,
for Aclose to ACt the deftection is large close to the short sides, and type II solutions are
relevant. In the present case of a positive k, it does not seem restrictive to suppose that the
deflection remains small in the region of x == 0(1).

Equations (29) and (33) govern the evolution of the first amplitude A \(X) when the
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load increment e increases. Their classical treatment[16, 18] is recalled for the sake of
completeness. It is convenient to introduce the amplitude and the phase

Hence eqns (29) may be integrated

(34)

(35)

where Q and E are constants of integration. Because of the boundary conditions (33), the
real amplitude r(X) is zero at the boundaries X =0, Le'/2. By virtue of (34) the constant
Q is zero, and the phase 8(X) is constant. This means that the boundary conditions prevent
a variation of the wavenumber at the order e'/2. We establish later on that the phase is
more slowly modulated.

We now study the evolution of the shape of the real amplitude r(X). A solution
branch bifurcates from the trivial one r =0 when there exist nonzero solutions of the
linearized equation

4r"+r = 0, r(O) = r(Le '/2) = O. (36)

The first bifurcation value e, = (2n/L)2 is small because the length is large. The nonlinear
analysis of (35) is straightforward. The phase portrait is given in Fig. 3. Because of the
boundary condition (33), only the closed curves are relevant. These solutions r(X) are
proportional to a Jacobian elliptic function, which is periodic[24]. It is pictured for various
e in Fig. 4, in the case where the amplitude has only a half-wave. Close to the bifurcation
value e" the amplitude is nearly {4(e-el)/3e,} 1/2 sin (x/L), and the influence of the short
sides spreads to the entire plate. For e/e, large-equivalently, eV large-the amplitude in
the centre of the plate is nearly equal to unity, that is, the maximal amplitude. Close to
the short sides there are boundary layers of which the thickness is of order e- I / 2 in terms
of the initial variable x. Thus the size of these layers decays when the load increases. At
this stage, the influence of a short side is limited to a decreasing region. The saddle-saddle

0.4

Fig. 3. Phase portrait in a quarter of plane. The pictured maximal amplitudes are 0.1, 0.4, 0.7,
0.95 and 0.995. The corresponding tltl are 1.008, 1.13, 1.60, 3.95 and 9.06. The origin is a focus.

The point (1,0) is a saddle.
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L/2

Fig. 4. Patterns amplitude along the half-plate for the same values of B as in Fig. 3. A boundary
layer appears for large B.

loop of the phase portrait renders an account of this boundary layer. The corresponding
complex amplitude

(37)

satisfies A \(0) = 0 and eqn (29) in the half-infinite domain X> o. The possible values of
the initial phase cP cannot be found at the present step of computation. The solution (37)
of (29) first appeared in [24), and a very accurate coincidence has been observed by
Wesfreid et al.[2S) in an experiment of convection. There can be only a qualitative
agreement with the plate experiment of Clement et al.[13) because the experimental aspect
ratio (nine) was not sufficiently large. All solutions other than the previous one appear by
bifurcation from the trivial solution at the values ell = (2mrIL)2, n being an integer. They
present n half-waves. When e becomes large, the amplitude is nearly ± 1, except in the
boundary layers and in n - 1 internal walls where the solution is similar to (37). As it can
be expected, these solutions with internal walls are unstable[24).

The previous analysis is sufficient for a load increment 8 of order 1/£2, in which case
it is not worth computing the QI introduced in (14) because ex remains small everywhere
in the plate. Henceforth we consider a larger 8, of order IlL at least. We have just seen
that, in this range, the postbuckling amplitude is nearly constant in the centre of the plate,
and there are two boundary layers corresponding to solutions of (29) as in (37). Therefore
it is consistent to begin with the half-infinite problem (x > 0).

By applying conditions (7) and (8) to the deflection w in the form (32) up to the order
8, we obtain

(38)

The second order amplitude equation (31) can be rewritten as

(39)

where we have introduced the operator Ii' (.), which is linear with respect to real coefficients

(40)
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Since the first amplitude is given by (37), we easily find the asymptotic behaviour of the
solutions A 2(X) of (39) for large X's.

A 2(X),.., ei • (C] e- x1J2+C2 eX1J2+iC3+iC4X).

Hence the requirement of a bounded A 2(X) gives two equations (C2 = C4 = 0), that
seem adequate in addition to the initial condition (38). But the linear operator !£ (.) is
singular, as can be seen by taking the derivative of eqn (29) with respect to the arbitrary
phase cP

(41)

This suggests that the solution of (38) and (39) is not bounded for any right-hand side of
(39). The boundedness requirement will provide Q) as a function of cPo Let us introduce
the bilinear form

(a, b) = ItO {a(X)5(X)+c.c.} dX. (42)

If A 2(X) and the trial function a(X) are bounded with vanishing derivatives for large X,
the following identity is easily established by integration by parts

We choose a = iA). On account of (38), (39), (41) and (43) and of the obvious identities

(iA;" ,iA I) = 1/8, (44)

we find the first term QI in the wavenumber expansion (14)

With the numerical values of ex, y, ~ in (30), (31) and (38), we obtain

Q J = 0.044877 - 1m (p e- 2i,p )/8.

(45)

(46)

Hence the wavenumber variation Qle l/2 depends on the arbitrary phase cP that is
introduced in (37). For the half-infinite problem, this phase remains indefinite, and there
is a one-parameter family of solutions. Because of (46), Q I is restrained to lie in an interval.
In terms of the original variable x, the interval of selected wavenumbers is

For the finite domain analysis, we refer to Cross et a/.[18]. If eL is of order one, a similar
family of solutions can be built up from the second short side x =L. Both families can be
matched in the centre of the plate, which leads to an equation for the phase cPo Nevertheless,
for eL sufficiently large, there is a large number of admissible wavenumbers that are
distributed in the whole band (47). Daniels[26] has studied the stability of these solutions.
He has established that the wavenumbers corresponding to stable solutions are also
distributed in the same band.

There should be three qualitative behaviours, according to the signs of Q_ and Q+.
In the present case, Q _ is negative and Q + is positive, whatever the flexural compliance k
of the supports at the short sides may be. Hence, the wavenumber may remain constant
when the load increases, and the finite domain analysis[18] has shown that the variation
of the wavenumber is not significant. But there are many other stable solutions, whose
corresponding wavenumbers lie in the cone pictured in Fig. 5 and given by (47). To observe
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Fig. 5. Computed lower limits in the clamped case, for k = 0.5 (dashes) and in the supported case
(dots). These results hold only for small load increment.

these solutions, it is necessary to carry out an alternative loading process. If one reduces
the load from such a state whose wavenumber is different from the critical one, the
wavenumber changes and goes to its critical value. According to the finite domain analysis,
the basic mechanism of this wavenumber variation is a sequence of snap-through, whose
number may be large. In other respects, formula (47) shows that the cone of admissible
wavenumbers extends when the flexural compliance k increases, as is the case for beam
buckling[20].

We remark that, with the alternative boundary conditions (6), Q _ is positive, as
established in Appendix C. Then the wavelength necessarily decreases when the load
increases. In this case, the sequence of snap-through exists also for an increasing load.

Our asymptotic method is similar to the one of Cross et al.[18], but they use the two
scales X and x rather than X and ,. With their method, one finds (39) with Q 1 == 0, and
the boundedness condition is not satisfied. Using an identity like (43), one can compute
the imaginary part of A2(oo), which is different from zero. Therefore the series (16) no
longer holds for large X, so that a second asymptotic expansion and a matching are needed
to obtain the selected wavenumbers. Our method permits us to avoid this step.

5. SIMPLY SUPPORTED SHORT SIDES

In this section, we consider briefly the case of simply supported short sides. The
boundary conditions for the deflection at x == 0, L are (7) and

o~w(O,y) == o;w(L,y) == O. (48)

The amplitude equations (29), (31) are still valid, but the second one will not be useful.
The main change with respect to the clamped case relies on the fact that wand o;w are in
phase and, consequently, that the amplitude A .(X) does not vanish at the boundaries. IT
one requires the (21t/q)-periodicity in the Ox-direction, the claasical theory[3, 4] allows one
to establish the existence of buckled solutions for a load greater than A.(q). Because the
boundary. conditions are invariant under the change x'" - x, they may be satisfied by
these periodic solutions, as was proved by an argument in [20], Part I. Hence, there exist
solutions for (q, A.) in the region above the neutral stability curve, and we now study their
stability.

With account of (34), we can rewrite (35) as

4(r" -rlJ'2)+r-r3 == O. (49)

We assume that the expansions (16) are valid up to the short sides. Therefore the boundary
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conditions (7), (48) can be applied to (32), which leads to
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r'(O) = r'(1) = 0,'

9(0) = n/2, 9(1) = (n+ 1/2)n-L, (50)

(51)

where n is an integer and 1= Lt I /2. The periodic solutions of Von Karman equations
correspond to the following family of solutions of (34), (49), (50) and (51)

Q=nn/l-£-1/2 = (l-r3)1/2/2.

r(X) = ro, 9(X) = QX+n/2, (52)

(53)

If 1 is much larger than one, there are many admissible "wavenumbers" Q, which are
densely distributed in the interval

(54)

This interval corresponds to the whole region above the neutral stability curve (11). The
amplitude ro vanishes at the extremal values Q= ±1/2, which bears out that the neutral
stability curve is a bifurcation locus for periodic solutions.

Von Karman equations derive from a potential energy. For the sake of simplicity, we
reintroduce a sort of potential energy as follows: we multiply the amplitude equation (29)
by functions eSA (X) such that

Re eSA1(0) = Re eSA 1(1) = 0

to be in accord with (50). Next we add the complex conjugate. On account of (51), we
conclude that A I (X) is a stationary point of the functional

~(Al) =r{4IA'd2-IAI2+ li4

} dX,

~(r,9) = f: {4r'2+4r29'2-r2+ r;} dX. (55)

If one drops the modulation of the amplitude and of the phase, the functional 41 should
be compared with the potential energy obtained by the classical theory[3]. Then ~ appears
as the potential energy divided by £2 and by a positive constant. Hence, the equilibrium
states (52), (53) are stable if and only if they are local minima of G. Let us compute the
second variation of~ close to the states (52)

In theory, the boundary conditions (50) restrict the admissible values of eS9'(X). Because
the wavenumber Q in (53) varies almost continuously, it seems rational to consider 68'(X)
as unrestrained. Minimizing (56) with respect to the phase, we find

eS9' = -2QeSr/ro.

Inserting (57) into (56), we can put the stability test in the form

(57)

(58)
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Because of (51), c5r(X) is unrestrained and condition (58) is equivalent to

3ra -1-12Q2 ~ O.

On account of (53), we finally obtain

(59)

(60)

Hence, in the (A., q) plane, the stable solutions occupy the region above a curve of
parabolic shape

(61)

which is three times narrower than the neutral stability curve [compare (60) with (54)].
This type of wavelength selection by phase instability is known under the name ofEckhaus
instability[27).

6. COMPARISON WITH OTHER THEORIES, COMPARISON WITH EXPERIMENTS

The classical postbuckling theory[3, 4] can be applied when the linear analysis provides
a small number of instability modes, mainly when the aspect ratio is finite. This analysis
also holds for an infinite plate if the wavenumber is a priori kept at its critical value. So
the buckled deflections are in the form

w(x,y) == a cos y sin (x+cp)+O(aJ), (62)

where the amplitude a is related to the load increment e by an algebraic equation [y being
given in (30)]

(63)

This usual method has been recently extended when there exist two nearly coincident
instability modes, for instance with a simply supported plate whose aspect ratio r is close
to 2 112• The possible deflections combine the two modes W.(x,y) and W 2(x,y)

(64)

where the amplitudes a. and a2 are solutions of the following two equations that involve
numerical coefficients 1% •••• Y2 .

{l%lat+pa~-e+YI(r-2·'2)}al == 0,

{pat+I%~~-e+Y2(r-2112)}a2 == O.
(65)

According to the values of the coefficients, these equations account for several postbuckling
behaviours that often include secondary bifurcations. With the present boundary conditions
(5), the two modes (a. == 0 or a2 == 0) are stable for e much larger than Ir-2 1121[9]. Then
the two wavelengths can be observed. With the alternative boundary conditions (6), only
the shorter wavelength is selected(IO].

As for the problem studied in the present paper, there exists an infinite packet of
instability modes. To take the whole packet into account, we used the double scale expan
sion method, as it is classically used within the field of hydrodynamic instabilities. In
particular, we followed the ideas of the excellent paper of Cross et a/.[l8]. In comparison
with (62), the deflection of the clamped plate is modulated by a slowly varying amplitude.
whose shape depends on the load increment (Fig. 4). For finite eL the deflection in the
left half-plate is written as (see also Fig. 6)

w(x,y) == ye 112 tanh (x(e{8) 112) cos(qx+cP) cos y+O(e). (66)
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x

Fig. 6. Amplitude r and deflection w in the boundary layer.

Hence, the amplitude of the oscillations varies in a boundary layer whose width is of order
8- 1/ 2 and, therefore, decreases when the load increases. For large 8L, there are many
solutions that are characterized by their initial phase tjJ. The wavenumber q depends on tjJ,
and it is restricted to lie in a band of width 8, which is given by (47). It is important to
remark that the band of admissible wavenumbers increases with the flexibility of supports
k (Fig. 5). The computation of this band is the main result of this paper, because the
postbuckling behaviour follows from it in the range 8 = O(ljL). The wavenumber may
remain constant with an increasing loading, but one may observe a sequence of snaps
with a decreasing loading, as explained in Section 4. With the alternative boundary
conditions (6), the band of admissible wavenumbers is computed in Appendix C. It has
been established that the wavelength must decrease when the load increases. It is noteworthy
that these two results are qualitatively equivalent to those previously quoted in the case of
an aspect ratio close to 21/ 2, but any general inference should be reckless. A short account
of our computations has been published in [22], but the reader should be aware that the
numerical values of Q± were wrong.

For a simply supported plate it is not worth introducing an amplitude modulation. A
stability analysis with respect to changes of the wavenumber permits one to select a band
of admissible wavenumbers which is larger than in the clamped case (Fig. 5)

Iq-II ~ {ejI2} 1/2 +O(e). (67)

Most of our results are in qualitative agreement with the experiments[13, 14]. But
the experimental band of admissible wavenumbers does not coincide with (47), even if
there is a better fit than with a previous study[23]. A too-definite comparison would not
be significant because the experimental aspect ratios (eight, nine) are not sufficiently
large. In this respect, new experiments are needed. A second reason makes doubtful the
comparison in the clamped case. Indeed our starting equation (I) assumes a uniform and
uniaxial prebuckling stress, which is wrong near the clamped sides. Nevertheless, eqn (l)
and the analysis of Section 3 remain valid outside the regions x = 0(1), L-x = 0(1).
Hence, it is likely that only the numerical values of the coefficients lX, p in (38) would be
altered after having accounted for the nonuniformity of the prebuckling stress.
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APPENDIX A

We compute the first two terms, f2 and f" of the stress function, which depend on the amplitudes A .(X),
Az(X) and on the normalization factor y. We recall that thef'<X,~,y)'s must be z,r-pcriodic with respect to ~,

and they must satisfy the boundary conditions (5). These requiremcllts are implicit in what follows. Let us
introduce the function

U(~;y) ..~ cos y,

which generates (with 0) the kernel of the operator O. Let us note the identities

[U,O] .. 2 cos 2y,

[U, U] = 2eU(.

Then, with the WI' W2 given in (24), (25), eqn (22) can be written as

&2f2 = -y2(Aie2l~+IAd2 cos 2y+c.c.).

For convenience, let gJ..y) and g(y) be the solutions of

&2go = 16 cos 2y_ go(y) = I + cos 2y,

(AI)

(Al)

(A3)

(A4)

(AS)



Wavelength selection in the poltbuckling of a long rectanauIar plate

Hence, the solution of (A4) is

12(X, ~,y) '"' -{IA ,1 2(1 +cos 2y)+Aie~9 (y)+c.c.}y2/16.
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(M)

(A7)

Next we compute the r.h.s. of (23), with account of (5), (24), (25), (26), (A2), (A3), (A7) and of the following
two results

[u, U] '"' -ie2l(,

[U,O] '"' -[0, U] '"' -i cos 2y,

the nonsymmetric operator [,] being defined in (15). We obtain thus

[W., W2] '"' 2y2(A,A2e2l(+AI..i2 cos 2y+c.c.),

4O(ox~/2 '"' 4iy2AIA'I e 2l( (I +b cosh 2y)+c.c.,

2 [OXW., w.] "" -2iy2(A ,A', e2l(+A;..i I cos 2y+c.c.).

Equation (23) can be written as

(A8)

(A9)

(AIO)

(All)

(A12)

~2/) = -2y2{(A.A2+iA I AJ(l +2b cosh 2y»e~+(A•..i2-iAl..i,) cos 2y+c.c.}. (Al3)

To solve (AI3), we need the solution h(y) of

(AI4)

which is

hey) '"' y2 cosh (2y)f2 + C cosh 2y+dy sinh 2y,

x2(sinh x cosh x-x)
c'"' 8(sinh x cosh x+x) ,

Then the solution of (AI3) is

X cosh2 X
d'"' - =-:-:-:---:--....,.

2(sinh x cosh x+x)

(AIS)

13'"' -1{(A.A 2+iA.A'\)g(y)e2l(+2biA I A.lh(y)e2l(+c.c.

+(1 + cos 2y)(A •..i2+..i\A2-iA'I..i I +i..i;A.)}y2. (AI6)

Similarly as in (5), the stress function must satisfy

I(O,y) = oxf(O,y) "" 0, (A17)

which is not consistent with the solution (17), (A7), (AI6). This means that the expansion (17) does not hold up
to the short sides. The stress function has to be corrected in a sidewall region of width x - 0(1), but this
correction does not alter either the amplitude equations that are valid in the region X'"' 0(1) (hence x 1arF) or
the sidewall deflection (32) that permits us to find the amJ'litude boundary conditions (33), (38).

APPENDIX B

Here we establish the two amplitude equations (29), (31), which follow from the solvability conditions for
the existenceofw) and We. After having introduced the mean value«' >>on the rectangle (0, 2x) x (-x/2, +x/2),
we can write the solvability condition for an equation Ow = F(~,y)

I 120 {fH/2 }«Fa>>= -22 F(~,y)O(~,y) dy d~ = O.
n 0 -012

(81)

Of course, (BI) is equivalent to (28), which implies that the solvability condition proceeds only from the term
ei ( •••) in the Fourier expansion of F(',y). .

Because (~+2)w, and (~+2)W2 are zero, eqn (20) is reduced to

(82)

After several integrations by parts, one establishes that, for any 2n-periodic functions v(',y), w(',y) that are zero
for y = ±n12, one has

«rf, wJv» = «rw,vJ/»· (83)
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With account of (A2), (A3), (A7), (BI), (B2), (B3), and of the obvious identity

«IV]"» = 1/2, (84)

the solvability condition for (20) can be put in the fonn

4A7 +A , -AJiAJil1'l(1 +(<9»)/4 = 0, (B5)

which is equivalent to (20) if one sets

1'l =4/(1+(<9»). (86)

The calculation of the mean value of g leads to the 1'2 given in (30). It will not be necessary to solve completely
(B2).

With the W" Wl in (24), (25) and with the definition of I

(B7)

eqn (21) becomes

Ow. = 1-40lx(A+2)w) +Lf20 wll+Lflo wd+ 2[oxf2' w, ]+2[orwI .fd·

Using the same conditions as for (B3), we establish by integrations by parts the following identities

(B8)

(B9)

(BI0)

(BI2)

(Bll)

«[f, w]U)>:& -«[V, w]f»,

«[w,f]U» .. «f{[w, VI-[V, w]}»,

«Oolx(A+2)w)) "" «olxw)(A+2)0»,. O.

As consequences of (A2), (A3), (A7), (A8), (A9), (AI6), (B3), (B9), (BIO), we find

«lf2,wlI0»" -{IA,12A2+A~12(<9»}1')/8,

«[flo wdO» ,. - l{2(1AJi2 A 2 +iIAJi2 A', )(<.9»+4ibIAJi2A', «h» +At12

+IAJi l A 2-iIAJi2A', +iAfl', }y), (813)

(B14)

(BlS)

2«[oxfl' wIlO» - f{Atl', +IA,I 2A', +21A ,,2A', «g»}iyJ,

2«[OXW,.f2]0»" IAJi 2A',iyJ/4.

Gathering (B1), (84), (B7), and (Bll) to (BI4), we obtain the solvability condition for (88) as

4Ai +A 2 -21AJi 2A1 -A~12 ,. 4iA'," -8iQ , A', +2iA', +11AJi2A~1'2(b«h»-I). (B16)

One computes easily the mean value of the function hey) defined in (AI4) or (AlS)

«II>>= sinh n(I/4-d)/n-(cosh n)/2 ~ 0.78612.

On account of(Bl7), (26), (30), the amplitude equation (BI6) is identical to that written in (31).

(BI7)

APPENDIX C

Al\er few changes, the calculations of Appendixes A and B hold for the boundary conditions (6). We relate
that in detail to compare with the result of Pomeau[23]. The field equations (18) to (23) Deed DOt be altered. The
stress functions (A7) and (AI6) and the amplitude equations (29), (31) keep the same form if one replIlcea (26),
(30), (31) by

g(y) - I or a - b - 0,

cS=l.

(CI)

(C2)

(C3)

The latter two are obvious consequences of (CI), (86), (816). Note that it is not DeCeIIlU'y to compute h(y), and
that the boundary conditions (6) lead to drop the hyperbolic functions in the solution or (22), (23).

The numerical values of Q~ (see (47» are easily found

Qt = 1/8±(1+4k2)112/16.

In the cue of pcrfoctly clamped short sides, one has

Q_ = 1/16, Q+ "" 3/16,

(C4)

(CS)

and these values are twice those found in [23J.


